Development of a research strategy for integrated technology-based toxicological and chemical evaluation of complex mixtures of drinking water disinfection byproducts.
نویسندگان
چکیده
Chemical disinfection of water is a major public health triumph of the 20th century. Dramatic decreases in both morbidity and mortality of waterborne diseases are a direct result of water disinfection. With these important public health benefits comes low-level, chronic exposure to a very large number of disinfection byproducts (DBPs), chemicals formed through reaction of the chemical disinfectant with naturally occurring inorganic and organic material in the source water. This article provides an overview of joint research planning by scientists residing within the various organizations of the U.S. Environmental Protection Agency Office of Research and Development. The purpose is to address concerns related to potential health effects from exposure to DBPs that cannot be addressed directly from toxicological studies of individual DBPs or simple DBP mixtures. Two factors motivate the need for such an investigation of complex mixtures of DBPs: a) a significant amount of the material that makes up the total organic halide and total organic carbon portions of the DBPs has not been identified; and b) epidemiologic data, although not conclusive, are suggestive of potential developmental, reproductive, or carcinogenic health effects in humans exposed to DBPs. The plan is being developed and the experiments necessary to determine the feasibility of its implementation are being conducted by scientists from the National Health and Environmental Effects Research Laboratory, the National Risk Management Research Laboratory, the National Exposure Research Laboratory, and the National Center for Environmental Assessment.
منابع مشابه
A feasibility study of cumulative risk assessment methods for drinking water disinfection by-product mixtures.
Humans are exposed daily to complex mixtures of chemicals, including drinking water disinfection by-products (DBPs) via oral, dermal, and inhalation routes. Some positive epidemiological and toxicological studies suggest reproductive and developmental effects and cancer are associated with consumption of chlorinated drinking water. Thus, the U.S. Environmental Protection Agency (EPA) conducted ...
متن کاملDisinfection byproducts in swimming pool water in Sanandj, Iran
The present study aimed to determine the concentrations of several disinfection byproducts (DBPs), including trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetonitriles (HANs), in the public and private swimming pools in Sanandaj, Iran (n=16). Correlations between DBP levels with water quality parameters (free chlorine, pH, total organic carbon, temperature, number of swimme...
متن کاملTrihalomethane formation potential in drinking water from Minab Steghlal dam to water distribution network in Bandar Abbas, Iran
Introduction: Organic matters enter to drinking water from a variety of sources, but one of the major sources of these compounds in aqueous solution can be decomposed plant and microbial residues. Chlorination is the most common method for water disinfection, the free chlorine in the water reacts with natural organic compounds and form disinfection byproducts. One of the dangerous byproducts is...
متن کاملEvaluation and mapping of groundwater quality for rigation and drinking purposes in Kuhdasht region, Iran
Preservation of water quality, particularly in areas with inadequate water resources is considered as one of the principles of planning in integrated water management. In Kuhdasht, a region at the west of Iran, groundwater and spring water resources are the major contributors of drinking and irrigation water supply. The aim of this study was to determine the suitability and mapping of springs a...
متن کاملUltraviolet Light
Ultraviolet light (UV) is a recognized disinfection alternative to chlorine and ozone in many applications from drinking water to wastewater treatment. UV provides effective disinfection without production of problematic disinfection byproducts. Information on the mechanism and application of UV for drinking water disinfection is presented. Advantages and disadvantages of the technique are disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 110 شماره
صفحات -
تاریخ انتشار 2002